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Higher Dimensions:
Motivations for Study

Higher Dimensions:

Kaluza-Klein models and Unification:
String Theory,
Brane worlds:

"From above view’ on Einstein gravity.



Gravity In Higher Dim. Spacetime
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No bounded orbits
Gravity at small scales is stronger than in 4D



"Running coupling constant’
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4D Newton law Is confirmed for r>l.

Q.: How to make gravity strong (HD) at
small scales without modifying it at large
scales?

A.. Compactification of extra dimensions

"Our space dimensions’

Extra
dims




Gravity In ST with Compact Dims
Example: AYD =0 M'=R>xS’

R 1 - G'Mz sinh(zr /1)cosh(zr /1)

Ir  cosh®(zr/1)—cos*(zz/1)

d(r,z=0) ~ S Il\r/lﬂcoth(yzrll), G=Gr/l

2
W=-13"[ dx* [V, D, VD" +(m +%)c1>q>*]

>3 _/_/l >



Brane World Paradigm

Bosons, fermions and gauge fields are localized
within the 4D brane

Gravity is not localized and 'lives’ in (4+k)-D
bulk space

Fundamental scale of order of TeV. Large extra
dimensions generate Planckian scales in 4D space



Black Holes as Probes of Extra Dims

" We consider first black holes in the mass range\

10%g<«< M «10%¢g
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Mini BHs creation in colliders




BH formation
Bolding Phase

Thermal (Hawking) decay



Black Objects

Black Holes
[Horizon Topology SN(D-2)]

Exist in any # of dims
Generic solution is Kerr-NUT-(A)dS

Principal Killing-Yano existence is
their characteristic property

Hidden Symmetries, Integrability
properties

SN~

Black Rings
Black Saturns

Black Strings, ets



Higher Dimensional Kerr-NUT-(A)dS
Black Holes
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Hidden Symmetries of 4D BHs

Hidden symmetries play an important role in study 4D rotating black
holes. They are responsible for separation of variables in the Hamilton-
Jacobi, Klein-Gordon and higher spin equations.

Separation of variables allows one to reduce a physical problem to a
simpler one in which physical quantities depend on less number of
variables. In case of complete separability original partial differential
equations reduce to a set of ordinary differential equations

Separation of variables in the Kerr metric is used for study:
@ Black hole stability

@ Particle and field propagation

® Quasinormal modes

« Hawking radiation



Brief History of 4D BHSs

1968: Forth integral of motion, separability of the Hamilton-Jacobi and
Klein-Gordon equations in the Kerr ST, Carter’s family of solutions
[Carter, 1968 a, b,c]

1970: Walker and Penrose pointed out that quadratic in momentum
Carter’s constant is connected with the symmetric rank 2 Killing tensor

1972: Decoupling and separation of variables in EM and GP equations
[Teukolsky]. Massless neutrino case [Teukolsky (1973), Unruh (1973)].
Massive Dirac case [Chandrasekhar (1976), Page (1976)]

1973: Killing tensor is a "square’ of antisymmetric rank 2 Killing-Yano
tensor [Penrose and Floyd (1973)]

1974 Integrability condition for a non-degenerate Killing-Yano tensor imply
that the ST is of Petrov type D [Collinson (1974)]

1975: Killing-Yano tensor generates both symmetries of the Kerr ST
[Hughston and Sommers (1975)]
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Main Results (HD BHSs)

Rotating black holes in higher dimensions, described by the
Kerr-NUT-(A)dS metric, in many aspects are very similar to
the 4D Kerr black holes.

# They admit a principal conformal Killing-Yano tensor.

g& This tensor generates a tower of Killing tensors and Killing
vectors, which are responsible for hidden and “explicit’
symmetries.

# The corresponding integrals of motion are sufficient for a
complete integrability of geodesic equations.

# These tensors imply separation of variables in Hamilton-
Jacoby, Klein-Gordon, and Dirac equations.

# Any solution of the Einstein equations which admits a non-
degenerate a principal conformal Killing-Yano tensor is a
Kerr-NUT-(A)dS spacetime.



Spacetime Symmetries
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Sy =0 (Killing equation)

S(uw) =£g . (conformal Killing eq)

5 = D_lf‘fv D is # of ST dimensions



Hidden Symmetries
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Symmetric generalization

CK=Conformal Killing tensor
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Antisymmetric generalization

CY=Conformal Killing-Yano tensor

_ P __\7t
k/”l/UZ"-/Un - k[ﬂiﬂz---ﬂn]’ kﬂz---ﬂn v k/”l/UZ"-/Un
V(:ul kﬂz)ﬂs---ﬂn+1 - gﬂlﬂz kﬂs---ﬂn+1 - (n _1) g[ﬂs(ﬂl k,UZ)---,Un+1]

If the rhs vanishes f=k is a Killing-Yano tensor



K =f f “* 1sthe Killing tensor
g My o fhy TV

It 1, , I1saKY tensor then for a geodesic

motionthetensor p, , =1,  U™Is

parallelly propagated along a geodesic.



Principal conformal Killing-Yano tensor

— gcaé:b — gcbfa’ (*)

V[ahm]—O E =V"h
V.h= ! XY ASh, (*)
7 D=1 |
h =db, D=2n+¢

PCKY tensor Is a closed non-degenerate
(matrix rank 2n) 2-form obeying (*)

J




Properties of CKY tensor

Hodge dual of CKY tensor is CKY tensor

Hodge dual of closed CKY tensor is KY
tensor

External product of two closed CKY tensors
IS a closed CKY tensor



Darboux Basis
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Canonical Coordinates

hem! =FIX"m;

A non-degenerate 2-form h has n independent
eigenvalues

n essential coordinates x* and n+ & Killing
coordinates y/; are used as canonical coordinates



Principal conformal KY tensor

Non-degeneracy:
(1) Eigen-spaces of h are 2-dimensional
(2) x,, are functionally independent in some domain

(they can be used as essential coordinates)

(1) is proved by Houri, Oota and Yasui e-print arXiv:0805.3877

(2) Case when some of eigenvalues are constant studied in
Houri, Oota and Yasui Phys.Lett.B666:391-394,2008.
e-Print: arXiv:0805.0838



Killing-Yano Tower




Killing-Yano Tower: Killing Tensors

h= hY“=hah =..=h"Y"=haha..Ah =h"=hAhAa..Ah

J times n times

2 4 2] 2N
k,=*h  k, =*h"’ k, =*h"! k =*h""
D-2 D-4 D-2] D-2n=¢
K'=kek K?=k,Kk, K=k k, K'=k ek

Set of (n-1) nontrivial rank 2 Killing tensors
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Killing-Yano Tower: Killing Vectors

& ===V'h_ isa primary Killing vector
V(a gb) = I:en(a h : (*)
On-shell (R, ~ Ag,,) (*) implies &, =0

Off-shell it Is also true but the proof i1s much complicated
(see Krtous, V.F., Kubiznak (2008))



a=Kic =, =K,5 :>"':>é:j:Kj.é: = =IO s

Total number of the Killing vectorsisn+¢

dy ( X)_l_ 0 &=0,, U =]](x-x)
Wi = U / " Ty u_v 4 H
V£ L

Total number of conserved guantities

(n+&)+(n=1D+1=2n+&=D
KV KT ¢



Reconstruction of metric

[ Principal Conformal Killing-Yano Tensor ]




Coordinates

Killing coordinates: v,,w,,...\, ,,
Essential coordinates: Xx,,...,X

n

2-planes
of rotation




Off-Shell Results

~
A metric of a spacetime which admits a (non-
degenerate) principal CKY tensor can be
g written in the canonical form. y

1 A n-1
eﬂ:FdXﬂ’ e":a/Qﬂ;Adei
jz =

Q

L, X, =X ,(x,)
Uﬂ

Houri, Oota, and Yasui [PLB (2007); JP A41 (2008)] proved this result under additional assumptions:
L.g=0and L.h=0. Recently Krtous, V.F., Kubiznak [arXiv:0804.4705 (2008)] and

Houri, Oota, and Yasui [arXiv:0805.3877 (2008)] proved this without additional assumptions.



On-Shell Result

. . . . 2
g A solution of the vacuum Einstein equations

with the cosmological constant which admits a
(non-degenerate) principal CKY tensor
coincides with the Kerr-NUT-(A)dS spacetime.

\_ /

n
B 2k
X,=b,x, kzc;ckxﬂ

Kerr-NUT-(A)dS spacetime is the most general BH
solution obtained by Chen, Lu, and Pope [CQG (2006)];
See also Oota and Yasui [PL B659 (2008)]



"General Kerr-NUT-AdS metrics in all dimensions®, Chen,
LU and Pope, Class. Quant. Grav. 23, 5323 (2006).

n=[D/2|, D=2n+¢
R, =(D-1)Ag,,

A, M —mass, a, —(n—1+ &) rotation parameters,
M _—(n—-1-¢) NUT' parameters

Total #of parametersis D—¢ |




lllustrations

Let us consider a 4D flat spacetime with the metric
dS° =—dT°+dX?*+dY*+dZ?

and let b be the following 1-form

b=1[-R*dT +a(Y dX =X dY)], R®°=X*+Y?+Z°

One has
h=db=dT A(XdX +YdY +ZdZ) +adY AdX
f=*h=XdZAdY +ZdY AdX +Y dX AdZ +adZ AdT




— gcafb - gcbga’ (*)
V[ahbc] =0, & ===V'h,

0 X Y Z)
-X 0 -a 0
“ 1Y a 0 O
-Z 0 0 O,

E9 =1h,"=(-10,00), £, =5,

3

th,x =1=-0y 5(0) etc.



(@ —ay aX 0o

—aY Y?+7? XY —XZ
Kab: 2 -

aX —XY X?4+Z -YZ

L0 _XY -YZ X?+Y?-a?)

K=K, p*p®=L*+2aEL, +a*(E* - p?)
é:(W) Kabféo)ﬁ —a28 _|_a[Y8 _XﬁY] azﬁ —aa

t=T+ap, w=-—¢la,
0 =0,, 0,=ao, —a‘léw;

5(0) at | 5(‘/)



Darboux coordinates

HS =h*h _, II°, =H% —AJ";

(—R?—A ay —aX 0
[ —-aY a‘—X*—A — XY —XZ
aX — XY a‘—-Y*—A -YZ
L0 _XZ Yz —z%-A,

det(l) =0 = A°+(R°—a’)A-a°Z’=0,
A, =1[a*—R?+/(R* —a?)? +4a’Z],

r’=-—A_, y’=A_ areessential coordinates




X = a‘l\/(r2 +a’)(a® —y*) cos g,

Y = a‘l\/(r2 +a’)(a’*—y?)sineg,
Z=ary,

2 2
dS? =—dT*+(r* + y°)[ Zdr ~+ Zdy -
r*+a® a’-

]+a=(r°+a’)(a* - y?)de’

T=t+ay, p=—ay
1 2 2 2 2 2 2 dr?
—— [-R(dt + y“dy )" +Y (dt —r°dy)° ]+ (r° + y°)[
r-+vy R
R=r*+a* Y=a’-y’

(*) ds*=

2
+dy ],
Y

This is a flat ST metric in the Darboux coordinates
associated with the potential b.



b=3[(y* —r*—a®)dt—r’y*dy]

Three important results can be proved:
(i) For arbitrary R(r) and Y (y) b iIs a potential generating a closed
conformal Killing-Yano tensor for the metric (*);
(1) (*) with arbitrary functions R(r) and Y (y) is the most general metric,
which admits a closed conformal Killing-Yano tensor;
(i11) (*) with arbitrary functions R(r) and Y (y) belongs to Petrov type D

The Einstein equations, R, =-349,,,, for these metrics are

puv!
satisfied iff the following equation is valid
d’R d?Y
+ =12A(r* + y°).
i T ay (re+y°)

The most general solution of this equation can be written in the form
R=(r’+a’)(L+Ar’)—-2Mr, Y =(a’-y?)1-Ay?)+2Ny




Remark: the tranformationr - i1x, M —IM makes the
expressions for the metric (*), potential b, and the solutions
symmetric with respect to the map: x <>y



Principal CKY tensor in Kerr-NUT-(A)dS

V. k., D.Kubiznak, Phys.Rev.Lett. 98: 011101, 2007; gr-
gc/0605058; D. Kubiznak, V. F., Class.Quant.Grav. 24
F1, 2007; gr-qc/0610144.

n—-1
h=db, b=1Y A% dy,

k=0

(The same as in a flat ST in the Carter-type coordinates)



Complete integrability of geodesic motion in
general Kerr-NUT-AdS spacetimes

D. N. Page, D. Kubiznak, M. Vasudevan, P. Krtous,
Phys.Rev.Lett. 98 :061102, 2007; hep-th/0611083

P. Krtous, D. Kubiznak, D. N. Page, V. F., JHEP
0702: 004, 2007; hep-th/0612029

Vanishing Poisson brackets for integrals of
motion



Separabllity of Hamilton-Jacobi and Klein-
Gordon equations in Kerr-NUT-(A)dS ST

V. F., P. Krtous , D. Kubiznak , JHEP (2007); hep-th/0611245;
Oota and Yasui, PL B659 (2008); Sergeev and Krtous, PRD 77 (2008).

Klein-Gordon equation 0 = L 9.(\/|9lg™0,8) = m*®.

Vil

i

Multiplicative separation D = HR# z,) H Wit

=1

m 9 1
(A,_ n } —|—E}L“Rj i.lt (Z{ Ii)n 1— FLIII ) _ZE}L[ I_i)n—l—kR — 0.
T H k=0 k=0

2
b,=m



Notes on Parallel Transport

Case 1: Parallel transport along timelike geodesics

Let u® be a vector of velocity and h,, be a PCKYT.

P° =67 +u,u® is a projector to the plane orthogonal to u®.

Denote F,, = P°P°h, =h, +u.u‘h, +h_u‘u,

Lemma (Page): F,, Is parallel propagated along a geodesic:
V.F, =0

u' ab

Proof: We use the definition of the PCKYT
Vuhab - uagb - gaub



Suppose h,, Is a non-degenerate, then for a generic geodesic

eigen spaces of F, with non-vanishing eigen values are two
dimensional. These 2D eigen spaces are parallel propagated.

Thus a problem reduces to finding a parallel propagated basis in 2D
spaces. They can be obtained from initially chosen basis by 2D
rotations. The ODE for the angle of rotation can be solved by

a separation of variables.

[Connell, V.F., Kubiznak, PRD 78, 024042 (2008)]



Case 2: Parallel transport along null geodesics

Let I* be a tangent vector to a null geodesic and k* be a
parallel propagated vector obeying the condition 1°k, = 0.
Then the vector w* =k h** + BI* is parallel propagated,
provided 4=k, &°.

This procedure allows one to construct 2 more parallel
propagated vectors m* and n®, starting with I°.




We introduce a projector P, = g,, +2l ,n,, and F,; = PR’'h,,
One has: V,F,, = P’R’'V,h, = 2P;R’l &, =0.

Thus F_, 1s parallel propaged along a null geodesic. We use rotations
In Its 2D eigen spaces to construct a parallel propagated basis.
[Kubiznak,V.F.,Krtous, Connell, PRD 79, 024018 (2009)]



More Recent Developments

Separabillity of the massive Dirac equation in the

Kerr-NUT-(A)dS spacetime [Oota and Yasui, Phys. Lett.
B 659, 688 (2008)]

Stationary string equations in the Kerr-NUT-(A)dS

spacetime are completely integrable.
[D. Kubiznak, V. F., JHEP 0802:007,2008; arXiv:0711.2300]

Solving equations of the parallel transport along

geodesiCS [p. connell, V. F, D. Kubiznak, PRD,78, 024042 (2008);
arXiv:0803.3259; D. Kubiznak, V. F., P. Connell, arXiv:0811.0012 (2008)]



Einstein spaces with degenerate closed

conformal KY tensor [Houri, Oota and Yasui
Phys.Lett.B666:391-394,2008. e-Print: arXiv:0805.0838]

Separability of Gravitational Perturbation in

Generalized Kerr-NUT-de Sitter Spacetime
[Oota, Yasui, arXiv:0812.1623]

On the supersymmetric limit of Kerr-NUT-AdS
MetriCS [Kubiznak, arXiv:0902.1999]



GENERALIZED KILLING-YANO TENSORS

[Kubiznak, Kunduri, and Yasui, 0905.0722 (2009)]

Minimally gauged supergravity (5D EM with Chern-Simons term):
=*(R+A)-3F A*F + - F/\F/\A

= _ 1
dF =0, d*F IF/\F—O

R, +3A0, =3 (F, FC——gabF )

1
Torsion: T = ﬁ* -

Vc h, =V ., _% (*F)cd[ahd o] = 202507

Koy = () (%), © = chy € —1gh?

Application: Chong, Cvetic, Lu, Pope [PRL, 95,161301,2005]
Note: This is type | metric.



Summary

The most general spacetime admitting the PCKY tensor is described by the
canonical metric. It has the following properties:

It is of the algebraic type D

It allows a separation of variables for the Hamilton-Jacoby, Klein-Gordon,
Dirac and stationary string equations

The geodesic motion in such a spacetime is completely integrable. The
problem of finding parallel-propagated frames reduces to a set of the first
order ODE

When the Einstein equations with the cosmological constant are imposed
the canonical metric becomes the Kerr-NUT-(A)dS spacetime



