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Abstract

In his paper “Mate Selection —A Selection for a Handicap” [10], Amotz Za-
havi gives a new explanation, now widely accepted, of a puzzle in mate selection
that had already been noticed by Darwin and tentatively explained by Fisher, al-
though that explanation was later dismissed by others. See a more complete bibli-
ography in [10]. We give a game theoretic form to Zahavi’s argument, based upon
modern game theory, and specifically the notions of signalling and bayesian equi-
librium. Then we investigate how evolutionary dynamics could converge to that
equilibrium. Based upon an exceedingly sketchy model, we end up with a negative
conclusion, and a mechanism closer to Fisher’s argument.

1 Introduction
The paradox of the handicap in mate selection, called Handicap Principle since the
work of Zahavi [10, 11], goes as follows. It is a common observation in many species
that male characters that attract females are a handicap to the individual bearing it. Ex-
amples are, among others, large antlers of deer, brillant colors of birds, long feathers of
the peacoqs’ tail, song of cicadas, etc. How did natural selection lead to the emergence
of species where females would prefer handicapped males ?

A history of the related discussion, from Darwin to modern times, including Wal-
lace —who dismissed mate selection as an evolutive device— Fisher [2], Grafen [4, 5]
and Maynard Smith [7] can be found in the papers [10] and [5]. Our aim here is
to use the formulation in the framework of modern game theory, and specifically of
signalling theory (see [3, 8]), essentially the same as that of Grafen [5], to attempt
a dynamic investigation of the associated evolutionary game. As a matter of fact, a
bayesian equilibrium seems to be such a convoluted notion of equilibrium that one
may wonder whether there is a mechanistic process that may have driven evolution to
that state. Hence the attempt at a dynamic descritption in terms, here, of the replicator
dynamics. This will be done here only for a very simplistic model, and the conclusion
points to Fisher’s explanation more than to Zahavi’s and Grafen’s !

2 Signalling and bayesian equilibrium

2.1 A signalling game
A simple signalling game is as follows. There are two players, 1 and 2, choosing their
decisions u1 and u2 in decision sets U1 and U2 respectively, most often sets of mixed
strategies.
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The payoffs of the players are functions Ji(θ, u1, u2), i = 1, 2, of the decisions and
of a parameter θ belonging to some set Θ. But θ is a “private information” of player 1,
i.e. player 1 is able to choose his control via a function ψ1 as u1 = ψ1(θ), while player
2 does not know θ.

The game goes as follows: player 1 plays first. His decision u1 creates, possibly
via a noisy —probabilistic— mechanism, a signal s observed by player 2. Then player
2 plays, and he is allowed to choose his decision u2 via a function ψ2 as u2 = ψ2(s).

Both players know the mechanism that generates s as a function of θ and u1, lead-
ing to a probability law P1(s | θ, u1) which is common knowledge. But player 2 does
not know the specific realizations of the random variables involved.

Finally, we are compelled to adopt Harsanyi’s device for games of incomplete in-
formation: both players share an a priori distribution law, say P0, upon θ.

The interesting feature of that kind of game is that in making his decision, player
1 should take into account the information about his private data that he is leaking to
player 2 through his own decision.

2.2 Bayesian equilibrium
We now describe what we consider as an equilibrium of this game, called a bayesian
equilibrium.

Player 2 will form a conjecture as to how player 1 has formed his decision, of the
form u1 = χ(θ). Using that conjecture and the signal s, he will update his probability
distribution over θ according to Bayes rule, producing a conditional law P2(θ | s):

P2(θ | s) =
P1(s | θ, χ(θ))P0(θ)∫
P1(s | η, χ(η))P0(dη)

.

He then chooses u2 = ψ2(s) in such that,

∀u2 ∈ U2 , EP2(θ|s)J2(θ, χ(θ), ψ2(s)) ≥ EP2(θ|s)J2(θ, χ(θ), u2) .

Assume that player 1 has correctly “guessed” player 2’s conjecture χ. He then
knows completely how player 2 will construct his decision. i.e., the function ψ2. He
may choose his own decision u1 = ψ1(θ) such that,

∀u1 ∈ U1 , EP1(s|θ,ψ1(θ))J1(θ, ψ1(θ), ψ2(s)) ≥ EP1(s|θ,u1)J1(θ, u1, ψ2(s)) .

Definition The pair (ψ1, ψ2) is a bayesian equilibrium if, in the above construction,

∀θ ∈ Θ , ψ1(θ) = χ(θ) .

In words: even knowing player 2’s conjecture χ, player 1 cannot do better than using
that same decision rule.

Remark 1 It is not necessary, in defining a bayesian equilibrium, to introduce a dif-
ferent name for player 2’s conjecture χ and player 1’s decision rule ψ1, since we want
them to coincide. But doing so helps stress that χ is part of player 2’s strategy. As usual,
a Nash-like equilibrium can be viewed as a fixed point: ψ1 is a function ψ1 = F(χ),
and a bayesian equilibrium should satisfy F(ψ1) = ψ1.
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We do not attempt to write here first order necessary conditions that a bayesian
equilibrium should satisfy, because we shall only need a particular, and simpler, form
for our purpose. We only notice that there are bayesian equilibria where the signal s
is an invertible function of θ, so that if that equilibrium is played, after player 1 has
played player 2 is actually exactly informed of the previously private information θ.
The signal is said to be “honest”. Such an equilibrium is called separating. Otherwise,
the equilibrium is called pooling. Examples are easy to find where the signal is a
constant, independant of the private parameter, thus revealing no information at all.
And the same game may have equilibria of both types (see e.g. [8]). Mixed equilibria
also exist.

3 Mate selection

3.1 The signalling game
In the species considered, there are males and females, whose fitnesses will be denoted
F♂ and F♀ respectively.

Each male has a specific quality, a trait measured by q ∈ Q ⊂ R, favourable to its
overall fitness. It bears also a male phenotype related to its quality, denoted s ∈ S ⊂ R
(for signal). Typically, the size of the antlers for a deer.

Upon meeting a male, a female has a probability m of accepting to mate with him.
The better that male’s quality, the more usefull a large m for the female. Yet she has no
other cue to a male’s quality than its signal s. And of course, a large m is favourable to
the corresponding male’s fitness.

Let us formalize that situation. The fitnesses of the individuals involved are two
functions

F♂(q, s,m) and F♀(q,m) ,

assumed twice differentiable for our purpose. The male “chooses” his signal s, based
upon his private information q, as a strategy s = ψ♂(q) and the female “chooses”
her mating probability m with a particular male based upon the observed signal, as a
strategy s = ψ♀(s).

The hypotheses are that

∂F♂
∂q

> 0 ,
∂F♂
∂m

> 0 ,
∂2F♀
∂q ∂m

> 0 .

The last inequality captures the fact that for a low q, increasingmmay little increase, or
even decrease, F♀, while for a large q, increasing m will strongly increase F♀. Hence
∂F♀/∂m should indeed be increasing with q.

We also assume the classical concavity assumptions:

∂2F♂
∂s2

< 0 , and
∂2F♀
∂m2

< 0 ,

that let maxima exist.
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3.2 The bayesian equilibrium
We are looking for a bayesian equilibrium, i.e. a pair of decision rules s = ψ♂(q),
m = ψ♀(s). We may, without loss of generality assume that

ψ′
♂ =

dψ♂
dq

≥ 0 .

It is a matter of choosing the definition of what is a “large” s. But we shall further as-
sume that the inequality is strict —the male’s quality does impact its signal—, leading
to a separating equilibrium.

According to the definition of the bayesian equilibrium, the female forms a con-
jecture s = ψ♂(q). She would like to use a strategy m = ϕ(q). Assuming that the
equilibrium is separating, she will therefore use m = ϕ ◦ ψ−1

♂ (s) =: ψ♀(s). Notice
that as a consequence

ψ′
♀(s) =

ϕ′

ψ′
♂

(ψ−1

♂ (s)) .

It is clear that the optimal ϕ satisfies ϕ′ > 0. This can be derived from the first
order necessary condition

∂F♀(q,m)
∂m

(q, ϕ(q)) = 0 ,

which, via the implicit function theorem yields

ϕ′ = −
∂2F♀
∂q ∂m

(
∂2F♀
∂m2

)−1

> 0 .

We now write the first order necessary condition for the optimality of ψ♂, for ψ♀ fixed

∂F♂
∂s

+
∂F♂
∂m

ψ′
♀ =

∂F♂
∂s

+
∂F♂
∂m

ϕ′

ψ′
♂

= 0 . (1)

We now know that ∂F♂/∂m > 0, ϕ′ > 0 and ψ′
♂ > 0. Hence necessarily

∂F♂
∂s

< 0 .

The last inequality above is the “handicap paradox” : the signal should be detri-
mental to the male’s fitness, it should handicap the male. This is a general principle
of signalling theory that to be credible, a signal must be “costly”. Otherwise, it is
prone to deception. This has been used in other works applying signalling theory to
evolutionary biology. See e.g. [4, 5], [6], [1].

Another way of writing (1) is

∀q ∈ Q ,
dF♂(q, ψ♂(q), ϕ(q))

dq
=
∂F♂
∂q

(q, ψ♂(q), ϕ(q)) .

That is, the cost of signaling is exactly compensated for by the benefit of better mating
frequency.
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3.3 An sketchy model
The simplest model satisfying the hypotheses is as follows. Let Q = S = [0, 1], and

F♂(q, s,m) = q − α2s2 +m2 , (2)

F♀(q,m) = −(q −m)2 . (3)

It follows that ϕ(q) = q, and therefore that ψ♀(s) = χ−1(s). The first order condition
(1) reads

−2α2ψ♂(q)ψ′
♂(q) + 2q = 0 .

Hence, α2ψ2
♂(q) = q2 + c, c an arbitrary constant. To minimize F♂(q, ψ♂(q), ϕ(q))

but still be non-negative for all q ∈ [0, 1], one must choose the constant null, and

ψ♂(q) =
1
α
q , ψ♀(s) = αs .

Placing this back in the fitness functions, we obtain

F♂(q, ψ♂(q), ψ♀ ◦ ψ♂(q)) = q , F♀(q, ϕ(q)) = 0 .

4 Dynamics

4.1 Population effects of linear strategies
The strategies of both players are “closed loop” strategies, i.e. functions. Developing
a replicator type of dynamics in such a set up requires to endow the set of admissi-
ble strategies —which typically we did not specify— with probabilitiy measures, and
then invetsigate evolution equations for measures. Proving anything on these dynamics
proves extremely difficult. Even the case where strategic traits are a real variable is not
completely solved. (See [9]) W shall therefore greatly simplify the model (and weaken
our results) in two steps.

Step 1 We restrict the choice of strategies to linear ones. Let β, γ ∈ [0, 1] and

ψ♂(q) = βq , χ(q) =
1
γ
q ⇒ ψ♀(s) = γs .

Assume distributions of these coefficients among the populations of males and females
respectively as time varying probability distributions P♂(t, β) and P♀(t, γ), indepen-
dant from the quality distribution itself, governed by the probability measure P0. We
also write β̄ and γ̄ for the mean values of β and γ, and β̂2 and γ̂2 for their mean square,
and likewise for q’s mean q̄ and q̂2 its mean square.

The fitnesses of male and female individuals is (ignoring the time argument):

F♂ = q + β2

(
−α2 +

∫
γ2P♀(dγ)

)
q2 = q + β2(γ̂2 − α2)q2 ,

F♀ = −
∫∫

(1− βγ)2Pm(dβ)q2P0(dq) = (−1 + 2β̄γ − β̂2γ2)q̂2 .
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We notice that if γ is missmatched and different from α, males have an incentive to
cheat and use s = 1 if γ̂ > α, and give up any signalling if γ̂ < α.

Assume that P♀ has a density p♀(t, γ). The replicator dynamics are as follows:

ṗ♀(t, γ) = p♀(t, γ)[2β̄(γ − γ̄)− β̂2(γ2 − γ̂2)]q̂2 . (4)

(Deriving a comparable dynamics for the males would require that we assume that
different sub-population, with the same quality distribution, use different strategic co-
efficients β, quite unrealistic. We shall do otherwise.)

Step 2 To make things even simpler, we assume here that females choose either of
two γ values, say γ1 < α and γ2 > α. Let p♀(t) be the proportion of the female
population using γ1, and therefore (1 − p♀(t)) the proportion using γ2. Equation (4)
now reads, after elementary calculations

ṗ♀(t) = q̂2(γ1 − γ2)[2β̄ − β̂2(γ1 + γ2)]p♀(t)(1− p♀(t)) .

β and the γi’s are no larger than 1. As a consequence, β2 ≤ β, hence β̂2 ≤ β̄ and
(γ1 + γ2) ≤ 2. By hypothesis, γ1 − γ2 < 0. Therefore the coefficient in front
of p♀(1 − p♀) in the r.h.s. above is negative. Hence, for any p♀ ∈ (0, 1), its time
derivative is negative. The equilibrium probability distribution is therefore p♀ = 0.
Then γ̂ → γ2 > α, and the male population will be driven toward s = 1 for all q.

Remark It is easy to see that the same conclusion holds if we assume that γ ∈
{γ1, α, γ2}.

5 Conclusion
The somewhat paradoxical concluion of this exceedingly sketchy analysis is that, while
we started with Zahavi’s explanation of the handicap principle, as formalized by Grafen,
we end up with a dynamic system that points toward Fisher’s theory of self reinforce-
ment of female preferences, causing males to exagerate their sexual signalling traits.

At this point, more realistic investigations are nevessary, in terms of more biologi-
cally motivated fitness functions, and even more, richer strategy sets.
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